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Technology Drivers
- Embedded Systems -

Embedded System Distributed  System Networked System-of-Systems

Component

Airborne Radar Avionics Ground Station GIG

Attribute

Throughput ~ 1 TOPS ~ 10 GFLOPS ~1s GFLOPS < 1 GFLOPS

Form-factor 10s MFLOPS/W> 100 MFLOPS/W10 GOPS/W 10s MFLOPS/W

Data Rate ~500 GB/s ~ 100 GB/s ~ 10GB/s < 10GB/s

Latency > secs~ secs~ 100 mSecs~ mSecs

N t th t b dd d ilit t h h ll th t t th tN t th t b dd d ilit t h h ll th t t th t
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Note that embedded military systems have challenges that set them apart 
from distributed and networked systems, but…

Note that embedded military systems have challenges that set them apart 
from distributed and networked systems, but…



Technology Drivers
- System-of-systems -

Embedded System Distributed  System Networked System-of-Systems

System

Airborne Radar Avionics Ground Station GIG

Attribute
Application
Complexity 100s modules~100s functions ~10s modes 100s Programs

# Components <10 subsys 10s subsys 100s subsys 1000s nodes
Dynamic

topologies

Configurability

topologies,
users,

content/useUser selectredundancyStatic (design)

databases
b t tData 

Complexity
web content
(semantic)databasesstructuresarrays

distributed and networked military system have their own set of challenges that setdistributed and networked military system have their own set of challenges that set
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…distributed and networked military system have their own set of challenges that set 
them apart from embedded systems; and avionics have elements of both domains.
…distributed and networked military system have their own set of challenges that set 
them apart from embedded systems; and avionics have elements of both domains.



Open Systems Technologies
Embedded System Distributed  System Networked System-of-Systems

Performance
(Low Latency)

Airborne Radar Avionics Ground Station GIG

Hardware
Computation

Hardware VLSI, FPGA, DSP, multicomputers workstations, servers, clusters 
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Computation
Middleware

sp
ec

SAL, VSIPL, PVTOL, RT-CORBA Libraries, CORBA, SOA, NCES

g

Communication
Hardware FPDP, VME, Myrinet, RapidIO IP based: Infiniband, GigE, WWW

Communication
Middleware DDS, CORBA, JMS, HTTP, SOAPSMM, (RT)-MPI, RT-CORBA,DDS 
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Open Architecture Thrusts

Open Sensors

Open Avionics

MCE
Ground
Station

Open Avionics
Open Ground Stations

GIG 
Compatible 

Networks

GIG-connected C2ISR users/apps

Users/Apps 
(e.g. Exploitation)

CAOC

Sensors  Embedded OSA
Avionics  OSA and SOA blend
Ground Stations  Networked SOA

Leverage best of both
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GIG Users/Apps  Networked SOA

SOA = Service Oriented Architecture
OSA = Open System Architecture
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F-22 Raptor

• LO Stealth
• Supercruise (the ability to attain 

and sustain supersonic speeds 
w/o afterburners)

• Agility (maneuverability for shoot-

AN/APG-77
Radar

S htt // f 22 t / f d h

Agility (maneuverability for shoot
to-kill)

• Advanced Avionics (integrated 
4pi-steradian situation awareness)

• Supportability (by means of higher 
reliability and 2 level maintenance)

Source: http://www.f-22raptor.com/af_radar.php

Wing Area: 840 sq ft

Engine Thrust Class: 35,000 lb

Level Speed: 921 mph

Total Length: 62.08 ft

Wing Span: 44.5 ftWing Span: 44.5 ft

Horizontal Tail Span: 29ft

Tail Span: 18'10"

Total Height: 16.67ft

Track Width: 10.6ft

Engines: Pratt & Whitney F-119 

Max Takeoff Weight: 60 000 lb (27 216 kg)Max. Takeoff Weight: 60,000 lb (27,216 kg)

Max. External Stores: 5,000 lb (2,270 kg)

Weight Empty: 31,670 lb (14,365 kg)

Ceiling: 50,000 ft (15,240 m)

G Limit: 9+
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The F-22 Raptor is the world’s pre-eminent air dominance fighterThe F-22 Raptor is the world’s pre-eminent air dominance fighter

Source: http://www.f22fighter.com/



F-22 Avionics Architecture

8-12.5 GHz
Active ESA

10W TR modules 
Low Observability

ECCM
LPI modes

AN/APG-77 RADAR 

Highly sophisticated integrated avionics system architecture Highly sophisticated integrated avionics system architecture 
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Source: Military Avionics Systems,  I. Moir and A. Seabridge
2006 John Wiley & Sons, Ltd
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F-22 Acquisition

Request for proposals
1985

Program Start
Oct 86

First flight, 
preproduction

Sep 97

First flight, 
production

Sep 03
FOC

Dec 07

1981
Requirements issued Jul 1986

Design Submitted

Sep 1990
First Flight 

Aug 01
Production go-ahead 

Dec 05
IOC

Jul 09
Production capped

at 187 Aircraft
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Sources: 
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competitive AND timely AND high quality
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F-22 Supply-Chain Vendors
Source: Ending F-22A production:  costs and industrial base implications of 
alternative options / Obaid Younosss … [et al]

Avionics supplied by a small set of vendors but are the major cost 
component in a modern fighter aircraft

Avionics supplied by a small set of vendors but are the major cost 
component in a modern fighter aircraft
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Growth in Operational Flight Program (OFP) 
Complexity

rd
s F-35

(estimated)106

Aging Avionics in Military Aircraft
http://www.nap.edu/catalog/10108.html

K
 –

16
 b

it 
w

or

Estimated    1.7M SLOC OFP
90% ADA

F-22

(estimated)106

105

104

y 
U

til
iz

at
io

n:
  

F-15A F-16A

F-15E

104

103

102

O
FP

 M
em

or
y

F-106
F-111A

10

10

1

Year

Modern software architectures, technologies, and practices are crucial as theModern software architectures, technologies, and practices are crucial as the

1955         1965          1975          1985         1995          2005
1
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Modern software architectures, technologies, and practices are crucial  as the 
complexity of military aircraft software systems continues to grow exponentially
Modern software architectures, technologies, and practices are crucial  as the 
complexity of military aircraft software systems continues to grow exponentially



Outline
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– Layered architecture
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• Air Force Avionics Architectures
– F22 Raptor case study
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• Open Avionics and Ground Segments

– Key open avionics concepts
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• Acquisition in an Open Architecture Context
– Leverage and adapt
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• Conclusion
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Early Avionics Architectures

Distributed Digital Architecture
Circa 1970s

Distributed Analog Architecture
Circa 1960s

Federated Digital Architecture
Circa 1980s

F-4 Phantom F-14A Tomcat F/A-18 Hornet
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Current Operational Systems
1970s to 1990s

Radar
Cockpit Displays

EO / IR

Integrated 
Aircraft 
System

Computer

p p y

Flight Controls & 
Flight 

Management

Weapons

p

Recording

Communications
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F-22 Avionics Architecture

8-12.5 GHz
Active ESA

10W TR modules 
Low Observability

ECCM
LPI modes

AN/APG-77 RADAR 

Highly sophisticated capability based on 
integrated avionics system architecture 
Highly sophisticated capability based on 
integrated avionics system architecture 
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Evolving
1990s to 200X

Radar
Cockpit Displays

EO / IR

Integrated 
Aircraft 
System

Computer

p p y

Flight Controls & 
Flight 

Management

Payload 
Manage-
ment Unit

Weapons

p

Recording

Communications
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“PAVE PACE”  Avionics Architecture

• Extension of F22 integrated avionics system architecture
• Integrates RF sensing / management

• Extension of F22 integrated avionics system architecture
• Integrates RF sensing / management
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• Unified avionics digital network based on commercial technologies

g g g
• Unified avionics digital network based on commercial technologies



Open Architecture
201X - future

Radar Processor

Cockpit Displays

Flight Controls &

Processor

EO / IR Processor

Flight Controls & 
Flight 

Management

Recording

Processor

Processor

Weapons Processor Communications

S

Processor

Server
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Open Avionics
- Key Technologies -

ConceptConcept
Composable Open Reference Architectures

Plug-and-Play Hardware InfrastructurePlug-and-Play Hardware Infrastructure

Service-oriented Subsystems

Service-oriented Middleware

Service and Client Factorization

Avionics Metadata
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Open Avionics Architecture Elements
- Reference Functional Architecture -

Open Reference Architectures

Plug-and-Play HardwarePlug-and-Play Hardware

Service-oriented Subsystems

Service-oriented Middleware

Service & Client Factorization

Avionics Metadata

Radar AMRAAM
System EW

…
A

B

C D

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

…
E F G H

I

Mass Storage

Interface Control Documents
Network 
Adapter/ 
DataLink To/from GIG 

(virtual Ground Station)J

Interface Control Documents 
(ICD) define

• data items and messages
• protocols observed
• timing & event sequences

MIT Lincoln Laboratory
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• timing & event sequences



Open Avionics Architecture Elements
- Standard Plug and Play Hardware -

Open Reference Architectures

Plug-and-Play HardwarePlug-and-Play Hardware

Service-oriented Subsystems

Service-oriented Middleware

Service & Client Factorization

Avionics Metadata

Radar AMRAAM
System EWS

…
B

A C D

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

…Mass Storage

I

E F G H

Network 
Adapter/ 
DataLink J

• Self-describing components for 
self-organization (crucial for  
composable architecture).
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Open Avionics Architecture Elements
- Standard Plug and Play Hardware -

Open Reference Architectures

Plug-and-Play HardwarePlug-and-Play Hardware

Service-oriented Subsystems

Service-oriented Middleware

Service & Client Factorization

Avionics Metadata

Radar AMRAAM
System EWS

…
B

A C D

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

Mil Std 1394B 
(or Mil Std 1553)

Switched fabric

…Mass Storage

I

E F G H

ATR
Network 
Adapter/ 
DataLink J

• Self-describing components for 
self-organization (crucial for  
composable architecture).

ATR 
Chassis
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To/from GIG 

SEM-E Module



Open Avionics Architecture Elements
- Service Oriented Subsystem Interfaces -

Open Reference Architectures

Plug-and-Play Hardware

Reference Interfaces

Executable Service Interfaces

Reference Interfaces

Executable Service Interfaces

Plug-and-Play Hardware

Service-oriented Subsystems

Service-oriented Middleware

Service & Client Factorization

Avionics Metadata

Radar AMRAAM
System EWS

…
B

A C DA C D

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

…Mass Storage

I

E F G HE F G H

I
Network 
Adapter/ 
DataLink

To/from GIG 
(virtual Ground Station)JJAvionics performance constraints 

require domain-specific service / 
client technologies

Avionics performance constraints 
require domain-specific service / 

client technologies
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Open Avionics Architecture Elements
- Middleware -

Open Reference Architectures

Plug-and-Play Hardware

SOA middleware is:
1.Communication middleware 

(e.g. DDS pub/sub)
2.Registry/Broker

SOA middleware is:
1.Communication middleware 

(e.g. DDS pub/sub)
2.Registry/Broker

Plug-and-Play Hardware

Service-oriented Subsystems

Service-oriented Middleware

Service & Client Factorization

Avioincs Metadata

Radar AMRAAM
System EWS

…
B

A C DA C D

Avionics SOA Middleware

3. Interface description language
4.Common services
3. Interface description language
4.Common services

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

o cs SO dd e a e

…Mass Storage

I

E F G HE F G H

I
Network 
Adapter/ 
DataLink

To/from GIG 
(virtual Ground Station)JJ

SOA middleware supports:
1.Position independent services 

and clients
2.Real-time communication*

SOA middleware supports:
1.Position independent services 

and clients
2.Real-time communication*
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Open Avionics Architecture Elements
- Service/Client Decomposition -

Open Reference Architectures

Plug-and-Play Hardware 1. Define standard behavior of 
subsystem services

2. Subsystem implementations 
hidden from outside world 

1 Wrapper for legacy systems

1. Define standard behavior of 
subsystem services

2. Subsystem implementations 
hidden from outside world 

1 Wrapper for legacy systems

Plug-and-Play Hardware

Service-oriented Subsystems

Service-oriented Middleware

Service & Client Factorization

Avionics Metadata

Radar AMRAAM
System EWS

…
B

A C DA C D

Avionics SOA Middleware

1. Wrapper for legacy systems
2. Embedded OSA details hidden
1. Wrapper for legacy systems
2. Embedded OSA details hidden

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

o cs SO dd e a e

…Mass Storage

I

E F G HE F G H

I
Network 
Adapter/ 
DataLink

To/from GIG 
(virtual Ground Station)JJ
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1. Wrapper for legacy systems
2. Embedded OSA details hidden

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

o cs SO dd e a e

…Mass Storage

I

E F G HE F G H

IMission Computer Software
1 F t d i t i d li t

Mission Computer Software
1 F t d i t i d li t

Network 
Adapter/ 
DataLink

To/from GIG 
(virtual Ground Station)JJ

1.Factored into services and clients
2.Services mappable anywhere in 

system
3.Service internals are legacy codes 

of new variants

1.Factored into services and clients
2.Services mappable anywhere in 

system
3.Service internals are legacy codes 

of new variants
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Open Avionics Architecture Elements
- Metadata Definition -

Open Reference Architectures

Plug-and-Play Hardware 1. Metadata specifications describe
1. Message contents
2. Data products
3. Avionics system configuration

1. Metadata specifications describe
1. Message contents
2. Data products
3. Avionics system configuration

Plug-and-Play Hardware

Service-oriented Subsystems

Service-oriented Middleware

Service & Client Factorization

Avionics Metadata

Radar AMRAAM
System EWS

…
B

A C DA C D

Avionics SOA Middleware

CNIDisplay
Subsystem

Mission 
Computer

Mass Storage
K

o cs SO dd e a e

…Mass Storage

I

E F G HE F G H

IAvionics Metadata Stores
Ph i l fi ti / t t

Avionics Metadata Stores
Ph i l fi ti / t t

Network 
Adapter/ 
DataLink

To/from GIG 
(virtual Ground Station)JJ

• Physical configuration/status  
descriptions

• Metadata catalogs for all data product 
stores

• Physical configuration/status  
descriptions

• Metadata catalogs for all data product 
stores
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Open Architecture Testbed
- OA Testing -

Shared
network 
storage

Service Nodes

Radar AMRAAM
S t EWSB

Environment
Simulation

g

resource 
manager

Radar System
…

A C DA C D

Avionics SOA Middleware

Web Server

g
CNIDisplay

Subsystem
Mission 

Computer

…
Mass Storage

I

E F G HE F G H

I

To LAN

Network 
Adapter/ 
DataLink

Control and Display

• Simulate subsystem interfaces
• Uses open avionics standards

Simulation
K
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• Simulate subsystem interfaces
• Uses open avionics standards

Simulation
K
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Open Architecture Testbed
- Operational Code Development -
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Control/ 
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Network 
Adapter

Display
• Factor Mission Computer Operation Flight Program 

(OFP) into Services and Clients
• Develop new OFP software
• Test interface compliance

Simulation
K
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Open Architecture Testbed
- Selective Build Out -
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Outline

• Open Architecture Vision for the Air Force
– Layered architecture
– Technologies– Technologies

• Air Force Avionics Architectures
– F22 Raptor case study

Architecture evolution– Architecture evolution
• Open Avionics

– Key open avionics concepts
– Architectures and testbeds

• Acquisition in an Open Architecture Context
– Leverage and adapt
– “Open” acquisition

• Conclusion
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Historical Approach

Government
PO

• Down select based on study, not demonstrated performance

• No competitive incentive after prime contractor down select

• Business model locks prime / sub for life of program
Prime 

Contractor

• Business model locks prime /  sub for life of program

• Government passes subsystem performance responsibility to prime

• All interfaces proprietary to prime / sub

• Business model locks improvements to initial prime / sub relationship
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Open Systems Support 
“Leverage Adapt” Strategy
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 Good for rapidly changing requirements

“Leverage & adapt”

Technology

100

Po
w

er

Good for rapidly changing requirements
 Built-in refresh and improvements 
 More difficult to manage 

“Freeze & build”
COTS with 
portable software

Refresh

1

10

Pr
oc

es
si

ng
 P

 Freezes technology and builds to fixed design
 Acceptable for slow moving technologies
 Requires stable requirements throughout lifecycle

Easier to manage ith c rrent acq isition strateg

ee e & bu d
Custom Hardware

Years
0 5 10 15

1
 Easier to manage with current acquisition strategy

• Open Systems support “leverage and adapt” strategy; allows DoD to leverage 
commercial industry’s investment

• Open Systems support “leverage and adapt” strategy; allows DoD to leverage 
commercial industry’s investment
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commercial industry s investment
• Continuous upgrade/refresh possible to meet evolving threats and obsolescence  

commercial industry s investment
• Continuous upgrade/refresh possible to meet evolving threats and obsolescence  



Need for Competitive Procurement
- E.G. F-22 Industrial Base -

Source: Ending F-22A production:  costs and industrial base implications of 
alternative options / Obaid Younosss … [et al]

• Need to change competitive posture of military aircraft industrial base:
 Competitive procurement and upgrade of components with high

• Need to change competitive posture of military aircraft industrial base:
 Competitive procurement and upgrade of components with high
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 Competitive procurement and upgrade of components with high 
“Intellectual Property” content.

 Competitive procurement and upgrade of components with high 
“Intellectual Property” content.



Need for Competitive Procurement
- E.G. F-22 Industrial Base -

Source: Ending F-22A production:  costs and industrial base implications of 
alternative options / Obaid Younosss … [et al]

1. Competition 
restricted to less 
complex items

2. Little “IP” 
competition

• Need to change competitive posture of military aircraft industrial base:
 Competitive procurement and upgrade of components with high

• Need to change competitive posture of military aircraft industrial base:
 Competitive procurement and upgrade of components with high
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 Competitive procurement and upgrade of components with high 
“Intellectual Property” content.

 Competitive procurement and upgrade of components with high 
“Intellectual Property” content.



Open Architecture Approach

Government 
PO

• Down select based on demonstrated performance (fly before buy)

• Competitive incentive through flight test and production decision

• Business model keeps competitive second source for life of program

• Government maintains responsibility for subsystem until directed sub integrationAvionics 
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Outline

• Open Architecture Vision for the Air Force
– Layered architecture
– Technologies– Technologies

• Air Force Avionics Architectures
– F22 Raptor case study

Architecture evolution– Architecture evolution
• Open Avionics

– Key open avionics concepts
– Architectures and testbeds

• Acquisition in an Open Architecture Context
– Leverage and adapt
– “Open” acquisition

• Conclusion
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Conclusion

• The Air Force is pursuing a layered open-architecture 
vision to improve system (of systems) capabilities in a cost 
effective and rapid manner.

• Open avionics are crucial to enabling the competitive, cost 
effective, and timely introduction of new war-fighting 
capabilities in platforms that will persist for decadescapabilities in platforms that will persist for decades.

• Service oriented concepts judiciously combined with 
embedded open system techniques will deliver the next 
generation of open avionics technologies andgeneration of open avionics technologies and 
architectures.

• Open architecture test beds based on executable 
specifications will accelerate avioincs integration and p g
provide the mechanism to compete new avionics 
technologies.
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